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Abstract

This paper evaluates the back-and-forth between Mayo, Howson, and
Achinstein over whether classical statistics commits the base-rate fal-
lacy. I show that Mayo is correct to claim that Howson’s arguments rely
on a misunderstanding of classical theory. I then argue that Achinstein’s
refined version of the argument turns on largely undefended epistemic
assumptions about “what we care about” when evaluating hypotheses. I
end by suggesting that Mayo’s positive arguments are no more decisive
than her opponents’: even if correct, they are unlikely to compel anyone
not already sympathetic to the classical picture.

0 Introduction

The base-rate fallacy involves conflating the likelihood of the evidence on a
hypothesis—P (E|H)—with the posterior probability of said hypothesis on
said evidence, or P (H|E). It is sometimes suggested that classical methods
that rely on error probabilities—particularly significance testing and hypoth-
esis testing—run afoul of the base-rate fallacy.1 Howson (1997, S188-89) offers
a striking claim to this effect, arguing that that the explication of classical rea-
soning offered by Mayo (1996) is “demonstrably unsound” (see also Howson
2000, 51–54).

1Philosophers who have endorsed some form of this argument include Achinstein (2001,
2010), Howson (1997, 2000), Korb (1991), Rosenkrantz (1977), Spielman (1973, 1974),
Sprenger (2017), and Titelbaum (2022). So far as I can tell, the argument is absent from
the statistical literature.
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Over the years, Mayo (1997a,b, 2005, 2010, 2018) has offered a number of
responses to Howson’s argument (see also Spanos 2010). Bayesians seem to find
these responses uncompelling, however. Achinstein (2001, 132–40, 2010, 182,
186–88), Sprenger (2017, 390), and Titelbaum (2022, 464) all employ a version
of the argument to illustrate the (alleged) deficiencies of either Mayo’s account
or “frequentist” statistics more broadly. And while Achinstein and Titelbaum
offer more subtle criticisms than Howson, Sprenger (2017, 390) concludes his
discussion of the example with the claim “significance testing is logically in-
valid.”2

Against the backdrop of the continuing popularity of the objection, I reeval-
uate three arguments that Mayo gives in response: first against the narrow
claim of invalidity or unsoundness, second against the more subtle contention
that error probabilities are not “what we care about” when testing a hypoth-
esis, and third that it’s the Bayesians who run into trouble in the relevant
cases. The first response is simply correct: the claim of invalidity or unsound-
ness rests on a misunderstanding of both Mayo’s work and classical statistical
theory more broadly. The second response is not definitive, but gains sub-
stantial support from epistemology: at best, the critics haven’t substantiated
their claim that error probabilities are less epistemically relevant than poste-
rior probabilities, let alone that they are irrelevant. The third response is less
decisive: plausibly, Mayo has identified a set of cases in which classical meth-
ods should be preferred to those advanced by her critics. But these cases are
unlikely to compel anyone not already sympathetic to the classical picture.

One note before I begin. In what follows, I eschew diving into the techni-
calities of classical theory whenever possible. This choice contrasts with Mayo
and (even moreso) Spanos, who both get deep into the technical weeds. In
staying away from the technicalities, I’m sacrificing some details relevant to
the argument of §2, though I flag these as they arise. The benefit is a more
accessible presentation and a demonstration of something that I think has
been lost in previous discussions: this particular debate doesn’t turn on the
technicalities or subtleties of classical statistics. You don’t need an education
in statistics to know that classical theory doesn’t commit the base-rate fallacy.

1 The narrow argument

Consider the following scenario:

2Sprenger bases this claim on more than one argument; as he sets it up, however, the
base-rate fallacy plays the central crowning role and is the sole response to contrastive
versions of significance testing.
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Disease Testing
We have invented a new binary test for the presence of a particular
disease. The probability that a person with the disease receives
a negative result on the test and the probability that a person
without the disease receives a positive result are both .05. The
incidence of the disease in the population is one in a thousand, or
.001. When we select a person from the population at random and
test them, they test positive.

What is the probability that we have randomly selected a person with the
disease? The correct answer to this question can be calculated easily. Let H
be the hypothesis that we’ve randomly selected a person with the disease and
+ be the positive result. Then by a straightforward application of Bayes’ rule:

P (H|+) =
P (H)P (+|H)

P (H)P (+|H) + P (¬H)P (+|¬H)

=
.001 ∗ .95

.001 ∗ .95 + .999 ∗ .05
≈ .019

People often give a different answer when asked similar questions (see, e.g,
Tversky and Kahneman 1982).3 In particular, they often respond to these
kinds of questions by saying that the probability is .95—that is, they report
the likelihood of + given H or (in other words) the probability of a positive
result given the assumption that the randomly selected person has the disease.
This answer illustrates the base-rate fallacy : it confuses the likelihood P (+|H)
with the posterior probability P (H|+).

Howson argues that classical statistics is committed to precisely this fal-
lacy (see Howson 1997, S188-89, 2000, 52–54). To make this case, he presents
examples like Disease Testing as cases of hypothesis/significance testing.4

The classical recipe for hypothesis testing involves administering a test that
is designed so that some outcomes are very improbable if the hypothesis is
true. Should we then observe those outcomes, the classical statistician takes
this to be powerful evidence against the hypothesis; a good reason to “re-
ject” it. How exactly we should interpret “rejection” here depends on whether

3Many of these survey questions are not tightly analogous, however. As Levi (1981, 1983)
stresses, for instance, survey questions usually involve subjects who aren’t randomly sampled
from the relevant populations. I’ll come back to this point in §5.

4In what follows, I’ll play a little fast and loose with the differences between Fisherian
significance testing, NP hypothesis testing, and Mayo’s error-theoretic reconstruction of
classical statistics. Versions of the argument presented below have been directed against all
three, and if the argument is successful, it applies to all three.

3



we’re working within the broadly falsificationist approach of Fisher, the more
behavioristic approach of Neyman and Pearson, or the evidential approach
outlined by Mayo. It doesn’t matter for the present discussion which of these
interpretations we prefer, however, so we can be sloppy in this respect and
say that “rejecting” a hypothesis just involves believing that it’s false—this
(ahistorical) interpretation of “rejection” is the most amenable to Howson’s
criticisms.

If we treat Disease Testing as a case of hypothesis testing, a positive
result is very improbable if the hypothesis that the randomly selected person
doesn’t have the disease is true (that is, P (+|¬H) is very low). Since we ob-
served this outcome, we have good reason to reject ¬H—that is, to believe
that H is true. This is the result that we derive even though, as Howson
stresses, it’s very likely that the H is in fact false. In effect, then, we’ve com-
mitted the base-rate fallacy: we’ve believed something that is very unlikely
to be true because the classical recipe for hypothesis testing tells us to reject
the hypothesis when the likelihood of the evidence is sufficiently low. So, since
we’ve just followed the rules of classical statistics here, classical statistics is in
some important sense intrinsically committed to the base-rate fallacy. How-
son concludes that the rules of classical statistics are “demonstrably unsound”
(Howson 1997, S188), and remarks that “It can only be in a Pickwickian sense
of ‘good’, therefore, that a 2 per cent chance constitutes ‘good grounds for H ’”
(Howson 2000, 54).

Call this formalization of Howson’s reasoning the “narrow argument”:

(N1) Classical statistics recommends using hypothesis testing to
determine whether the person randomly selected in Disease
Testing has the disease.

(N2) If (N1), then classical statistics recommends believing that
the randomly selected person has the disease.

(N3) The probability that the randomly selected person has the
disease is approximately .02.

(N4) Any theory that recommends believing P when P has a suf-
ficiently low probability is unsound.

∴ (NC) Classical statistics is unsound.

Howson’s claim that classical statistics commits the base-rate fallacy is es-
sentially a diagnosis of why it’s unsound: classical statistics takes the low
likelihood of the observed results on the hypothesis that the randomly se-
lected person lacks the disease as grounds for belief that they have the disease,
whereas the (only?) proper grounds for belief is a high posterior probability.
As Howson puts it:
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The counterexample shows clearly that despite the test’s being as
severe as you like, it is a mistake to suppose that the very (small)
chance of a test’s passing a hypothesis h when h is false is by itself
any indicator of the correctness of h if h passes the test. ... Indeed,
if you infer from the test’s positive diagnosis to the presence of the
disease you will be wrong nearly all the time. (Howson 1997, S189)

Presumably, a probability of approximately .02 is “sufficiently low”; that
granted, the argument is valid. The preceding paragraphs demonstrate that
(N2) and (N3) are both true. As we’ll see in §4, the idea behind (N4) is
contentious, but we’ll assume that it’s true for the sake of argument for now.
And the diagnosis is tendentious and dismissive—Howson (2000, 54) explicitly
urges us to think that the “unsoundness” of Mayo’s position is owed to an
obvious fallacy rather than a philosophically-motivated disagreement about
the proper approach to statistics—but (if the argument is correct) it does
seem to get at the heart of the problem.

That leaves (N1).

2 The narrow argument rebuffed

The first of Mayo’s three responses that we’ll consider is that (N1) is false.
In Mayo (1997a), for instance, she argues that classical hypothesis testing is
only appropriate when there aren’t (classically acceptable) priors. Where such
priors exist, the classical statistician should use them:

[R]ecall that the error statistical account is based upon frequentist
methods such as NP tests, and these methods developed precisely
for situations in which no frequentist prior is available or even
meaningful, as with the majority of scientific hypotheses of interest.
. . .

But if H is a random variable, and a frequentist prior is available,
the error statistician can use it too. (Mayo 1997a, S205-6)

In another article appearing in the same year, she points out that if we take
the perspective of classical statistics, the hypothesis in question should not be
considered a proper statistical hypothesis at all:

However, in all such examples, the hypotheses are forced to be
statements about the particular sample and are not statistical hy-
potheses. (Mayo 1997b, 326)
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According to Mayo, in other words, classical statistics views hypothesis testing
and calculating the probability that a random variable takes on some value as
distinct problems. (N1) is false, therefore, because Disease Testing involves
calculating the probability that a random variable takes on some value and is
thus not a problem where classical statistics recommends hypothesis testing.5

Is Mayo’s characterization accurate? To answer this question, we need look
no further than Fisher’s Statistical Methods and Scientific Inference, which is
unequivocal on the matter:

the different situations in which uncertain inferences may be at-
tempted admit of logical distinctions which should guide our pro-
cedure. That it may be the data are such as to allow us to apply
Bayes’ theorem leading to statements of probability; or secondly,
that we may be able validly to apply a test of significance to dis-
credit our hypothesis the expectations from which are widely at
variance with ascertained fact. (Fisher 1973, 37)

One can find similar comments elsewhere in Fisher’s work (e.g. Fisher 1958, 9–
10), as well in that of the other “fathers” of classical statistics, Neyman
(1971, 3) and Pearson (1962, 395–96). Indeed, these quotes are unsurprising.
Throughout the first half of the 20th century, Fisher’s “logical distinction” was
typically understood to be the distinction between “direct” inferences from
populations to (appropriately selected) samples—which admit of straightfor-
ward mathematical reasoning—and “inverse” inferences that go the other di-
rection.6 Only the latter were understood to be the proper domain of hypoth-
esis testing. This framework is largely presupposed in the canonical work of
both Fisher (1922, 313–14, 1958, 7) and Neyman and Pearson (1928, 175,
1933, 291).

So neither the canonical statements of the fathers of classical statistics
nor Mayo’s philosophically sophisticated reconstruction recommend applying
hypothesis testing in Disease Testing. Modern textbooks are no more sup-
portive of (N1). Lehmann and Romano (2022), widely regarded as the textbook
on hypothesis testing, open with a specification of the problem of statistical
inference that excludes Disease Testing:

5Spanos (2010) rightly points out that there are quite a few other problems with the use
of cases like Disease Testing in arguments against hypothesis testing, particularly in the
context of Mayo’s elaboration of it. This one will do for illustration, however.

6While this way of framing the debate has largely dropped out of the literature—not
without reason—we can find it centered as late as 1979, when Seidenfeld (1979, 2) opened
his book on statistical inference with the distinction between direct and inverse inference,
describing the former as “uncontroversial” and finding divergence only in the latter domain.
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The raw material of a statistical investigation is a set of observa-
tions; these are the values taken on by random variables X whose
distribution Pθ is at least partly unknown. Of the parameter θ,
which labels the distribution, it is assumed known only that it lies
in a certain set Ω, the parameter space. Statistical inference is con-
cerned with methods of using this observational material to obtain
information concerning the distribution of X or the parameter θ
with which it is labeled. (Lehmann and Romano 2022, 3)

Other textbooks are similar. Wasserman (2005, ix), for example, contrasts
“probability,” which involves calculating the probability of outcomes of a given
data-generating process, with “statistical inference” where the problem is the
“inverse” (again) of that for which the calculations of probability are appropri-
ate.7 Neither formulation licenses treating the question of whether a random
variable takes on a particular value as a hypothesis in the sense of statistical
inference generally speaking, let alone hypothesis testing.

Howson is aware that what we’ve termed (N1) is open to objection. Here
is his discussion, quoted in full:

It might be objected that the hypothesis in the example is a random
variable, whereas a hypothesis of the sort philosophers of science
usually discuss is not (Mayo several times claims that hypothe-
ses are not random variables). The objection is both wrong and
beside the point. It is wrong because there are models of Kol-
mogorov’s axioms in which hypotheses are random variables (mea-
surable functions): any hypothesis is a two-valued random variable
in the appropriate space. The objection is beside the point since
the error-probability conditions for a severe test of that particu-
lar hypothesis H are clearly satisfied; equally clearly, passing the
test provides no indication of H’s correctness. Indeed, the coun-
terexample is so telling precisely because H is a random variable,

7Here are a few more examples. Agresi, Franklin, and Klingenberg (2017, 10, 387) tell us
that statistical inference is concerned with inferences from samples to populations and that
the hypotheses tested in significance tests must concern the population. After introducing an
example in which a sample is drawn from a box, Freedman, Pisani, and Purves (2007, 478)
state that “a test of significance only makes sense in a debate about the box.” Casella
and Berger (1990, 345) define a statistical hypothesis as “a statement about a population
parameter,” emphasizing that the “important point is that a hypothesis makes a statement
about the population.” Even explicitly Bayesian treatments follow this pattern: Robert
(2001, 224) introduces hypothesis testing as matter of determining whether the true value
of a population parameter falls within the specified region.
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possessing an empirically-based prior distribution. (Howson 1997,
S190)

There are two rejoinders here. The second—that the objection is “beside the
point”—finds no real purchase against Mayo’s response: the problem is that
the account that he is criticizing says that it would be inappropriate to apply
hypothesis testing to the alleged example; whether the conditions are met for
the inappropriate test to deliver a particular verdict is immaterial. In deter-
mining whether a rule or procedure is “sound” or “valid,” what that rule would
say outside its explicitly specified domain of proper application is irrelevant.8

The narrow argument is akin to claiming that first-order logic is unsound be-
cause of what it says (or doesn’t say) when applied to strings of symbols that
aren’t well-formed formulas.

The first rejoinder—which is essentially that the objection is confused—
is more interesting. In the present context, Howson can be read as pointing
out that the distinction between inferences from populations to samples and
inferences from samples to populations is not recognized by probability theory.
That’s correct, of course, and at face value it puts pressure on the distinction
that the classical statistician wants to draw. Certainly, it undermines Fisher’s
characterization of the distinction as a “logical” one. It does not undermine the
distinction itself, however, at least not absent further argument. The classical
statistician has at least two routes for response.

The first of these is to appeal to different interpretations of probability. Ac-
cording to a “frequentist” interpretation, as Mayo (1997a, S205) highlights in
her response, we cannot coherently assign probabilities to certain kinds of hy-
potheses because those hypotheses are either true or false; there’s no sampling
procedure or long-run frequency to make the probability claim “meaningful”
(see also Spanos 2010, 577). As the hypothesis in Disease Testing is the
result of a random sampling process, it can be properly characterized as a ran-
dom variable according to frequentist strictures. So we can and should calculate
its probability distribution in a straightforward mathematical way rather than
employing hypothesis testing. In other words, a frequentist interpretation of
probability blocks Howson’s argument. Whatever the defects of frequentism,
it does license a distinction between Disease Testing and those cases where
hypothesis testing is applied.

While talk of different interpretations of probability is familiar to philoso-
phers, it is often misleading when mapped onto the concerns of statisticians.
The alternative is to ground the distinction in a view about what’s required

8Though see the next section, where I offer a more “charitable” reading of Howson that
has the interpretive disadvantage of not validating his conclusion.
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for the justified use of probability distributions in science. Roughly: there are
some cases where we have sufficient information to specify a intersubjectively
acceptable prior probability distribution. Disease Testing is a paradigm ex-
ample: we know the prevalence of the disease in the population and can treat
it as common knowledge. At the same time, there are other cases—thought by
the classical statistician to be more common in interesting scientific contexts—
where the prior probability distribution is so underdetermined that it’s better
to proceed without one. Pearson seems to endorse a version of this view in
recollecting about his early work with Neyman:

We were certainly aware that inferences must make use of prior
information and that decisions must take account of utilities, but
... we came to the conclusion, rightly or wrongly, that it was so
rarely possible to give sure numerical values to these entities, that
our line of approach must proceed otherwise. Thus we came down
on the side of using only those probability measures that could be
related to relative frequency. (Pearson 1962, 395–96)

Pearson’s suggestion, essentially, is not that probabilities are relative frequen-
cies, but that relative frequencies are a way of grounding or justifying the choice
of probability distribution.9 Like the first response, this one blocks Howson’s
rejoinder: the classical statistician may be wrong about what’s required for
justification, but they aren’t committed to (N1).

The narrow argument rests on the assumption that classical statistics rec-
ommends applying the methods of hypothesis testing in cases like Disease
Testing, an assumption I’ve labeled (N1). Mayo’s response is that (N1) is
false. On this point, she’s clearly correct: given that both the founders of clas-
sical statistics and Mayo herself explicitly recommend against doing so, both
the founders and modern textbooks adopt frameworks that preclude doing so,
and all three do so on grounds that are broadly consistent with their other
views on the interpretation and justification of probability functions, there is
simply no question of maintaining this assumption. The idea that classical
statistics is committed to the base-rate fallacy is simply a misunderstanding
of classical theory.

9On this point, it’s worth comparing the longer discussion in Neyman (1952, 22–27),
where the question is not “what is the proper account of probabilities?”—indeed, Neyman
(1952, 1) earlier suggests that this question is ill-posed—but “under what conditions can we
(justifiably) apply the mathematical theory of probability to the real world?”
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3 The refined argument

With the exception of Sprenger (2017), more recent discussions of the rela-
tionship between classical statistics and the base-rate fallacy have shied away
from insisting that the theory is actually committed to a fallacious inference.
Titelbaum, for instance, directs his discussion of what is essentially Howson’s
example against the idea that it’s appropriate to (automatically or mechani-
cally) reject the null hypothesis when the alternative passes a test (Titelbaum
2022, 464)—a conclusion that everyone involved accepts.

For our purposes, the more interesting argument is raised by Achinstein:

Suppose that Mayo refuses to assign a posterior probability to h.
Suppose she claims that we do not want, need, or have any such
probability, whether or not this is epistemic probability. Then I,
and I believe Mill, would have a problem understanding what pass-
ing a severe test has to do with something we regard as crucial in
induction – namely providing a good reason to believe h. ... passing
the test is not a good reason, or a good enough reason, to believe
the hypothesis. (Achinstein 2010, 183)

The idea behind Achinstein’s arguments is apparently simple: classical statis-
tics may not be committed to the base rate fallacy, but it doesn’t give us a
high posterior probability. And a high posterior probability is what we really
care about.

Note that Howson can also be read in this way, though doing so requires
treating his claim that classical theory is “demonstrably unsound” as mere
rhetoric. For instance, he complains that “Error statisticians ... have for decades
given us something quite different from what we want, which is a way of com-
puting the degree of confidence we should invest in hypotheses given empirical
evidence” (Howson 1997, S189). And his response to the objection that his
case involves a random variable could, with great charity, be understood as
granting the narrow point but holding that the fact that the kind of proper-
ties that the classical statistician cares about are so misleading in that scenario
indicates that something is deeply wrong with the approach.

Call this more subtle objection the “refined argument”:

(R1) (Even if hypothesis testing cannot strictly be applied to Dis-
ease Testing, the example still illustrates that:) Error prob-
abilities and posterior probabilities come apart.

(R2) The methods of classical statistics deliver error probabilities
rather than posterior probabilities.
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(R3) Posterior probabilities are “what we care about.”
∴ (RC) The methods of classical statistics don’t deliver “what we care

about.”

(R1) and (R2) are simply facts about the relevant quantities and methods.
The only point of attack, therefore, would seem to be (R3). I suspect that
most philosophers sufficiently enmeshed in Bayesian confirmation theory will
find (R3) plausible, perhaps even obviously true—once it’s demonstrated that
error probabilities and posterior probabilities come apart, the literature on the
subject has tended to assume that no further argument is needed to show the
classical statistics doesn’t give us what we care about. And while appeals to
the base-rate fallacy are both recent and limited to philosophy, the idea that
classical statistics doesn’t give us what we care about is an older and broader
one: Kyburg (1961, 27) calls essentially the same complaint “the most common
objection to frequency theory.”

Still, the fact that (R3) is intuitive is no guarantee that it is true. As we’ll
see, Mayo argues that it isn’t.

4 The refined argument rebuffed

The second of Mayo’s three responses is what initially appears to be an entirely
unpromising decision to bite the bullet. She repeatedly asserts that what we
really want (or at least what scientists really want) is not information about
how likely it is that the hypothesis is true, but information about how well-
“probed” it is; we want to know if it has been subjected to tests that are
discriminating and that can be expected to reliably distinguish true hypotheses
from false ones (Mayo 1997b, 328, 2005, 109, 121, 2010, 197, 2018, 226–27).
Why is that? Mayo clearly sees her response as grounded in the entirety of
the picture that she presents: the point of the various arguments that she
offers throughout her work is to convince us that probity is something that
we should care about. In some sense, then, Mayo and the Bayesian are simply
at loggerheads. Evaluating the refined argument is then impossible without
evaluating the position as a whole.

I do not think things should be left here, however. Though Mayo does
not make this connection in her published work, the idea that we care about
probity has substantial support within contemporary epistemology. In other
words, widely-held views in epistemology provide us with strong grounds for re-
jecting (R3) and thus the refined argument. Here, briefly, is the case. First, it’s
commonly thought that “what we care about” is knowledge, which comes apart
from posterior probability. Second, it’s also commonly thought that knowledge
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requires truth-tracking and, as we’ll see, error probabilities are best understood
as measures of the degree to which our method tracks the truth. Together,
these two common views imply the error probabilities are something we care
about in at least the same way that posterior probabilities are: they measure
something that is necessary but not sufficient for our central epistemic aim.10

Lottery paradoxes of the sort originally put forward by Kyburg (1961) can
be used to illustrate both of my main points in this section. So consider a
lottery in which one winner will be chosen at random from a set of 10,000
tickets. The probability of any individual ticket winning is then 1 in 10,000.
Kyburg points out that it is easy to generate a contradiction from these facts
using only extremely reasonable inferences. The probability that any individual
ticket wins is so low that you can reasonably conclude of any individual ticket
that it will not win. If you can conclude of any individual ticket that it will
not win, however, then it seems reasonable to conclude that no ticket will win.
But this contradicts our assumption that one of the tickets would win.

One common response to the lottery paradox is to hold that no matter
how high the probability that an individual ticket loses, there’s something
defective about believing that the ticket will lose. The problem is that even if
the belief that the ticket loses is true, it isn’t tracking the truth in a way that’s
important to knowledge. If the ticket was the winner, you would still think it
wasn’t (Dretske 1971). If you were to believe that it was, it still wouldn’t be
(Pritchard 2005). And there’s some important sense in which no explanation
would be needed for you to have an incorrect belief in this case—it would be
very normal for you to be wrong (Smith 2016). Regardless of how we choose
to cash out truth-tracking—the three options above are sensitivity, safety, and
normalcy, respectively—it’s widely felt that beliefs that track the truth are
more valuable than those that don’t, even in situations where both beliefs are
true or even both true and justified. Which is essentially to say that “what
we care about” is not just truth / accuracy but (modally stable) knowledge.
From this perspective, the lottery paradox is a particularly nice illustration of
the fact that high posterior probabilities can come apart from “what we care
about.”

So the lottery paradox illustrates the first of the two main points of this

10To be clear about how I see the dialectic, while the arguments below will indicate why
the relevant epistemological positions are plausible, I won’t offer anything like a full defense
of them here—interested parties should see Pritchard, Turri, and Carter (2022) and Ichikawa
and Steup (2017) respectively. Instead, my aim is to show that these common views have
important consequences for the present debate; that established, I suggest that—in virtue
of (R3)’s conflict with common epistemic views—the premise is at best in need of a defense
that it has not received in the literature.
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section: many contemporary epistemologists hold that what we care about is
knowledge, and knowledge comes apart from high posterior probability, which
is (at best) a necessary but not a sufficient condition for it. To illustrate the sec-
ond point—that the error probabilities of classical statistics should be thought
of as measuring the degree of truth-tracking—it will be helpful to have a more
finely specified case. So consider what we’ll call “Lockean lottery” after
Foley (1992):

Lockean Lottery
John doesn’t normally play lotteries, but on a whim he decided to
buy a single ticket for a lottery that he knows is fair. Feeling silly, he
considers whether or not to simply throw the ticket away, reasoning
that it is very likely that he lost. He decides that his decision should
be based on the size of the lottery; the larger the pool of tickets,
the more likely it is that his is a loser. After some consideration,
he decides that it would be unreasonable to believe that his ticket
has any worthwhile chance of winning if the number of tickets sold
exceeds 10,000. He thus settles on the following decision procedure:
he will throw the ticket away if more than 10,000 tickets have been
sold; otherwise, he will keep the ticket.

(Those who feel the potential costs of John’s decision affect our judgments
in this case can imagine that he has voluntary control over his belief and he
is simply deciding what to believe; nothing will turn on the actual costs and
benefits of throwing away the ticket.)

Notice: John’s ticket being the winning ticket doesn’t affect how many
tickets have been sold. As a consequence, the error probabilities for John’s
decision procedure are just a function of the cutoff he chooses. More precisely,
the probability of judging his ticket to be a loser when it isn’t is just the
probability that more than 10,000 tickets have been sold; the probability of
failing to judge his ticket a loser when it is is the probability that 10,000 or
fewer tickets have been sold. Or, more formally, the probability of the first
kind of error is P (n > 10, 000); the probability of the second kind is 1−P (n >
10, 000).

That’s bad. Normally, we aim for statistical tests in which both probabilities
are very near to 0. Infamously, a .05 probability of a false negative is a standard
minimum requirement for publication in most disciplines; there’s no similar
standard for false positives, but .2 is a commonly-cited cutoff. John’s method
can’t achieve anything close to that. In fact, if P (n > 10, 000) is anything other
than .5—in which case his method is no different than flipping a coin—he’s
guaranteed that the method will be anti -truth-tracking in one respect or the
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other. No honest statistician would ever recommend a testing method with
this error profile.

As Bayesians have rightly stressed for decades, the error probabilities are
not telling us that John’s method is unreliable; after all, if the number of tick-
ets sold is greater than 10,000, then John’s method is extraordinarily reliable.
It has a success rate of (n − 1)/n! Instead, what they’re telling us is that
John’s method is not tracking the truth of the hypothesis. More precisely, the
two error probabilities, P (n > 10, 000) and 1 − P (n > 10, 000), are quanti-
tative measures of how sensitive John’s method is to the truth and falsity of
the hypothesis respectively.11 If John’s method were perfectly sensitive, the
probability that John would reject the hypothesis if it were true would be 0,
as would the probability that he would accept that the hypothesis if it were
false.12 The poor quality of the actual error probabilities tells us that John’s
method is not tracking the truth at all, which means that it cannot support
knowledge; what the statistical analysis reveals that John’s beliefs don’t track
the truth in the way knowledge is commonly thought to require.

Contrary to what the critics suggest, therefore, classical statistics has a
good claim to giving us something that we care about: error probabilities
measure one of the necessary components of knowledge. At best, then, (R3)
in the refined argument is an unargued-for assumption that is inconsistent
with common views in epistemology. As such, I think it’s fair to conclude that
the refined argument is unsuccessful absent substantial further justification of
(R3).

In an important sense, however, this conclusion understates the problems
with the refined argument. Recall that the argument relies on a kind of sleight-
of-hand: the audience is shown a misleading-at-best example in which the
classical statistician allegedly commits to the base-rate fallacy, and it is then
argued that while they aren’t actually committed to the fallacy, the example
still illustrates that the methods of classical statistics are deficient in some
deeper sense. The entire intuitive pull of the argument, however, turns on the
base-rate case: what makes it compelling is that Disease Testing is the rare
situation where we know that posterior probabilities track the truth and thus
that results that disagree are unreliable—Howson (1997, S190) himself says as
much! In other words, the features that make the refined argument compelling
are exactly the features that make it misleading. To me, it thus seems fair to

11For more on the relationship between error probabilities—especially as analyzed by
Mayo—and modal conditions, see Fletcher and Mayo-Wilson (2024), Gardiner and Za-
haratos (2022), and Mayo-Wilson (2018).

12Of course, there’s a sense in which John could also be perfectly “sensitive” to the truth
by being wrong in all cases, but that’s not really the sense that concerns us here.
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conclude that even if the assumptions identified above can be defended, the
argument itself only has the advantages of theft over honest toil to recommend
it.

5 Should the Bayesian fear base rates?

The previous two sections have demonstrated that neither the narrow argu-
ment offered by Howson and Sprenger nor the refined argument offered by
Achinstein is successful. The former is just straightforwardly unsound; the
best thing that can be said about the latter is that it relies on assumptions
that are both controversial and for which no argument is provided. Neverthe-
less, there is one more argument of Mayo’s that we have yet to examine—an
argument to the effect that it is the Bayesian who should be afraid of base
rates.

To makes this case, Mayo appeals to scenarios that look superficially like
Disease Testing (Mayo 1997a, S205-6, 1997b, 327–29, 2005, 115–18, 2010, 195–
99, 2018, 368–69). Here is a version of her most common example:

Readiness Testing
The Test of Aptitude, Scholastic (TAS) is a widely used test for
evaluating college readiness, and its error rates are extremely well
understood. The probability that a person who is ready for college
receives a negative result on the TAS and the probability that
a person who isn’t ready for college receives a positive result are
both .05. A confluence of confounding factors—high rates of crime,
poverty, drug use, and homelessness; underfunded schools; and a
dearth of previous successful college students—indicates that only
one out of every 1000 residents of the town Fewready is ready for
college. Isaac, a rising senior living in Fewready, takes the TAS and
tests positive.

Mayo takesReadiness Testing to be amenable to the methods of hypothesis
testing in a way that Disease Testing isn’t (c.f. Spanos 2010, 577–79).
The crucial difference? Here our concern is with a particular individual, not
a randomly-selected sample, and the information about the population—the
prior, essentially—is no longer acceptable by frequentist strictures.13

Before turning to the importance of this point, notice that a strict Bayesian
can happily agree with Mayo that the previous research doesn’t dictate the

13Notice that Mayo is here departing from the framework found in the modern textbooks
quoted in §2. Since her view is explicitly revisionary, that’s not a problem, but it is important.
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choice of prior. Indeed, Levi (1981, 1983) makes essentially the same point in
his discussion of empirical research on the base-rate fallacy: for a committed
subjectivist, there’s no necessary connection between the frequency of college
readiness in the population and the prior probability that Isaac is college ready;
so long as the relevant probability assignments obey the Kolmogorov axioms,
the subjectivist is free to assign any prior probability. About this much, at
least, the strict frequentist and the strict subjectivist agree.

So the Bayesian should be willing to grant Mayo that there is no necessary
connection here; it’s consistent for her to employ the population-level infor-
mation in the first case but not in this one. Still, most Bayesians are liable to
say that the population level information is relevant ; after all, the whole point
of including prior distributions in the analysis—or at least of including priors
other than the objectivist’s minimally informative ones—is to account for in-
formation like the general rate of college readiness among Isaac’s peers. Here,
therefore, we have an example that parallels Disease Testing but where
the two accounts actually disagree. Why, then, does Mayo think this example
supports the classical viewpoint when she was so careful to reject the earlier
application?

To draw out her reasoning, notice an oddity about the Bayesian position in
this scenario: for the Bayesian, there is no reason for Isaac to take the TAS. Or,
more accurately, there is only reason to carry out the test given a very specific
utility distribution: Isaac’s text scores matter only if our decision problem is
set up so that the very small change in the probability of Isaac’s readiness
alters which of our options has the highest expected utility. There’s something
worrisome about this aspect of the Bayesian position: it seems bad that the
prior swamps any evidence that we could collect using available methods;
it seems worse that we have to jury-rig the decision problem to avoid the
situation where the Bayesian recommends rejecting Isaac from college purely
on the basis of their priors.

It’s easy to give this intuition some teeth. In the U.S., a long history of
discriminatory practices that encourage (and enforce) segregation has rendered
the location of a person’s residence a good proxy for their race (Rothstein 2017;
Taylor 2019). Widespread reliance on these proxies continues to contribute
to racial disparities in a variety of sectors, including incarceration, housing,
health, and education. Against this backdrop, it should be disturbing that
even apparently innocuous demographic information about Isaac’s peers can
entirely swamp the information that we have about Isaac himself—indeed, can
swamp it to such a great extent that there’s no point in Isaac even trying.

It’s worth being precise about the worry here. It is not that priors are
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“subjective” in some vague sense and therefore guaranteed to be biased.14

The concern is a narrower one: Mayo contends that when we take the crit-
ics’ own examples and strip them of the idealizations that ensure the accuracy
and/or relevance of the prior, we’re left with a scenario in which the Bayesian’s
recommendation—or at least the critics’—is extremely troubling. On the one
hand, we have a prior that is subject to few constraints, influenced by infor-
mation we have good reason to think is biased, and whose relevance to the
present testing situation we have no way of evaluating.15 On the other hand,
we have data from an extremely probabitive test that we know is relevant
to the present testing situation. But if we adopt the method that the crit-
ics apparently believe we should, we allow the former to dominate both our
epistemic conclusions (the posterior probabilities) and our decision making.

Bayesians have two traditional responses to worries about the subjective
elements of their methodology. Neither is particularly compelling in this case.
The first response involves pointing to results (e.g., Hawthorne 1993) that
show that agents who properly conditionalize will eventually converge on the
same posteriors under relatively weak assumptions about their priors. In this
scenario, however, it’s hard to see how eventual convergence helps Isaac—here,
at least, the Bayesian is susceptible to their own complaint that what we care
about is whether the hypothesis is correct, not whether our method has nice
features in the long run. The second response is to (correctly) point out that
classical methods also rely on the judgment of the individual statisticians. But
Mayo can—and indeed does (see Mayo 2018, Excursion 4)—grant the general
point while arguing that it isn’t relevant: at least in this specific scenario, we
have good reason to think that the priors are susceptible to bias and sub-
stantial empirical evidence that constrains the classical approach. Even if the
different elements are all generally susceptible to bias, the prior is clearly more
susceptible in this specific case.16

14Both critics and defenders of Bayesianism are guilty of running together a wide variety
of different objections under the heading of “subjectivity.” Mayo (1996, 2018) brings clarity
to at least one line of criticism; Sprenger (2018) brings some to the defense.

15Recent (more-or-less qualified) endorsements of Bayesian methods by theoretically-
inclined statisticians—e.g., Cox (2006), Kass (2011), and Gelman and Shalizi (2013)—have
tended to emphasize that priors can be a tool like any other in the statistician’s toolbox. In
this respect, at least, their remarks are less in the mold of Howson and Urbach (2006), and
more in-line with how Rosenkrantz characterizes the main commitment of his “objectivist
Bayesian” position: “The assumptions which underlie a prior distribution are every bit as
corrigible as those which underlie a data distribution or probability model of a natural phe-
nomenon. And, by the same token, they are as empirically confirmable in the one case as in
the other” (Rosenkrantz 1977, 189).

16A third response—retreating from the potentially biasing demographic information to
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What does this argument show? By itself, I think, not a lot. Consider two
distinct audiences for this kind of argument. The first views statistics as akin
to engineering: the goal is to develop the right test for a messy and complex
world where things often don’t behave as they’re supposed to.17 If they are
not already users of classical statistics, they are at least sympathetic to the
idea that there may be cases where Bayesian tools are ineffective or unreliable
and, crucially, take that as a reason not to use Bayesian tools in those spe-
cific cases. To this first audience, Mayo has offered a compelling scenario in
which potentially biased prior information swamps a probative test and thus
where it’s arguable that the classical approach is simply preferable. But the
interesting question for this audience is not whether these cases exist but their
commonality: is Readiness Testing more representative of the use of statis-
tics in science than the cases that Bayesians like Spielman (1974, 219) point to
when motivating their position? (How are we even to evaluate this question,
given that the concern is at least partly about the appropriate questions to
ask in different scientific contexts?)

The second distinct audience is more committed to a Bayesian philosophy.
This audience, I suspect, is unlikely to be swayed towards a pluralistic—let
alone a classical—approach by pointing to specific cases where a reliance on
Bayesian tools leads to dubious judgments. After all, one of the common com-
mitments of the Bayesian philosophy is to seeing the problems of statistics as
problems of logic; the goal is not a toolbox of different rules, methods, and
heuristics specifically suited to their individual situations, but rather some-
thing that looks like quantified first-order logic. Howson and Urbach express
this view when they remark that the “truth, rationality, objectivity, cogency
or whatever of the premises ... are exogenous considerations, just as they are
in deductive logic” (Howson and Urbach 2006, 301). They would likely say the
same thing about Readiness Testing; on their view, it’s simply not the job
of a theory of statistics to say anything about where you got the information
on which your prior distribution is based. Bad inputs lead to bad outputs—just
as they do in logic.

Like the refined argument, then, Mayo’s response is indecisive without
further supplementation (though one might fairly note that her work more
broadly can be viewed as an extended argument for the first of these posi-

a more objective prior—gives up the game. If the appropriate response to cases like this is
to ignore the apparent base-rate information and use the prior only as a technical tool, then
Mayo has made her point.

17On my reading, this metaphilosophy of statistics is not just that of Neyman (1952)
and Pearson (1962), but also pluralists such as Cox (2006) and arguably some practicing
Bayesians (e.g., Gelman and Shalizi 2013; Kass 2011).
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tions). Nor should this be surprising—if the disagreements among statistical
approaches could be definitively settled by appealing to simple examples like
those found in the philosophical literature, we would have expected it to be
settled long ago. Cast in this light, I think Mayo’s third response is best read
not as an argument against Bayesianism writ broadly—among other things,
not all Bayesians would endorse the kind of flat-footed picture of testing that
leads to trouble here—but instead as a demonstration that the defender of
classical statistics is just as capable of constructing problematic scenarios in-
volving base rates as the Bayesian.

6 Conclusion

It’s tempting to view the conclusion here as disappointing: what we’ve discov-
ered is that cases involving base rates do not, or at least do not obviously, help
us resolve debates about statistical methodology in either direction. Against
this disappointment, it’s helpful to remember where we started, namely with
Howson expressing the view that classical inferences are simply unsound in
virtue of committing a well-known and obvious fallacy. We’ve shown that that
argument rests on a serious mischaracterization of classical theory, and we’ve
also seen that more subtle appeals to the base-rate fallacy trade on that same
mischaracterization for their rhetorical force. Indeed, I think our investiga-
tion ends with an unusually clear recommendation: philosophers should stop
claiming the classical statistics runs afoul of the base-rate fallacy.
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